Surjectivity for Hamiltonian G-spaces in K-theory

نویسندگان

  • MEGUMI HARADA
  • GREGORY D. LANDWEBER
چکیده

Let G be a compact connected Lie group, and (M,ω) a Hamiltonian G-space with proper moment map μ. We give a surjectivity result which expresses the K-theory of the symplectic quotient M//G in terms of the equivariant K-theory of the original manifold M , under certain technical conditions on μ. This result is a natural K-theoretic analogue of the Kirwan surjectivity theorem in symplectic geometry. The main technical tool is the K-theoretic Atiyah-Bott lemma, which plays a fundamental role in the symplectic geometry of Hamiltonian G-spaces. We discuss this lemma in detail and highlight the differences between the K-theory and rational cohomology versions of this lemma. We also introduce a K-theoretic version of equivariant formality and prove that when the fundamental group of G is torsion-free, every compact Hamiltonian G-space is equivariantly formal. Under these conditions, the forgetful map K∗ G(M) → K∗(M) is surjective, and thus every complex vector bundle admits a stable equivariant structure. Furthermore, by considering complex line bundles, we show that every integral cohomology class in H2(M ;Z) admits an equivariant extension in H2 G(M ;Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The K-theory of symplectic quotients

Let G be a compact connected Lie group, and (M,ω) a compact Hamiltonian Gspace with moment map μ. We give a surjectivity result which expresses the K-theory of the symplectic quotient M//G in terms of the equivariant K-theory of the original manifold M , under certain technical conditions on μ. This result is a natural K-theoretic analogue of the Kirwan surjectivity theorem in symplectic geomet...

متن کامل

Surjectivity for Hamiltonian Loop Group Spaces

Let G be a compact Lie group, and let LG denote the corresponding loop group. Let (X,ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X,ω), and assume that the moment map μ : X −→ Lg∗ is proper. We consider the function |μ|2 : X −→ R, and use a version of Morse theory to show that the inclusion map j : μ(0) −→ X induces a surjection j∗ : H∗ G(X) −→ H∗ G(μ−1(0))...

متن کامل

On the $k$-ary ‎M‎oment Map

The moment map is a mathematical expression of the concept of the conservation associated with the symmetries of a Hamiltonian system. The abstract moment map is defined from G-manifold M to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much more.

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

$G$-Frames for operators in Hilbert spaces

$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007