Surjectivity for Hamiltonian G-spaces in K-theory
نویسندگان
چکیده
Let G be a compact connected Lie group, and (M,ω) a Hamiltonian G-space with proper moment map μ. We give a surjectivity result which expresses the K-theory of the symplectic quotient M//G in terms of the equivariant K-theory of the original manifold M , under certain technical conditions on μ. This result is a natural K-theoretic analogue of the Kirwan surjectivity theorem in symplectic geometry. The main technical tool is the K-theoretic Atiyah-Bott lemma, which plays a fundamental role in the symplectic geometry of Hamiltonian G-spaces. We discuss this lemma in detail and highlight the differences between the K-theory and rational cohomology versions of this lemma. We also introduce a K-theoretic version of equivariant formality and prove that when the fundamental group of G is torsion-free, every compact Hamiltonian G-space is equivariantly formal. Under these conditions, the forgetful map K∗ G(M) → K∗(M) is surjective, and thus every complex vector bundle admits a stable equivariant structure. Furthermore, by considering complex line bundles, we show that every integral cohomology class in H2(M ;Z) admits an equivariant extension in H2 G(M ;Z).
منابع مشابه
The K-theory of symplectic quotients
Let G be a compact connected Lie group, and (M,ω) a compact Hamiltonian Gspace with moment map μ. We give a surjectivity result which expresses the K-theory of the symplectic quotient M//G in terms of the equivariant K-theory of the original manifold M , under certain technical conditions on μ. This result is a natural K-theoretic analogue of the Kirwan surjectivity theorem in symplectic geomet...
متن کاملSurjectivity for Hamiltonian Loop Group Spaces
Let G be a compact Lie group, and let LG denote the corresponding loop group. Let (X,ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X,ω), and assume that the moment map μ : X −→ Lg∗ is proper. We consider the function |μ|2 : X −→ R, and use a version of Morse theory to show that the inclusion map j : μ(0) −→ X induces a surjection j∗ : H∗ G(X) −→ H∗ G(μ−1(0))...
متن کاملOn the $k$-ary Moment Map
The moment map is a mathematical expression of the concept of the conservation associated with the symmetries of a Hamiltonian system. The abstract moment map is defined from G-manifold M to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much more.
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کامل$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کامل